Aircraft Parameter Estimation using Feedforward Neural Networks With Lyapunov Stability Analysis
نویسندگان
چکیده
Aerodynamic parameter estimation is critical in the aviation sector, especially design and development programs of defense-military aircraft. In this paper, new results application Artificial Neural Networks (ANN) to field aircraft are presented. The performances Feedforward Network (FFNN) with Backpropagation FFNN using Recursive Least Square (RLS) investigated for aerodynamic estimation. methods validated on flight data simulated MATLAB implementations. normalized Lyapunov energy functional has been used derive convergence conditions both ANN-based algorithms. compared basis performance metrics computation time. FFNN-RLS observed be approximately 10% better than FFNN-BPN. Simulation from algorithms have found highly satisfactory pave way further applications real test data.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Regularization parameter estimation for feedforward neural networks
Under the framework of the Kullback-Leibler (KL) distance, we show that a particular case of Gaussian probability function for feedforward neural networks (NNs) reduces into the first-order Tikhonov regularizer. The smooth parameter in kernel density estimation plays the role of regularization parameter. Under some approximations, an estimation formula is derived for estimating regularization p...
متن کاملAircraft Parameter Estimation using Neural Network based Algorithm
Aircraft Parameter estimation is probably the most outstanding and illustrated example of the system identification methodology. In the past the most widely used parameter estimation methods have been Equation error method, Output error method, Maximum likelihood method and Filter error method. In this paper an algorithm based on neural modeling and Gauss-Newton optimization is proposed to esti...
متن کاملParameter-estimation-based learning for feedforward neural networks: convergence and robustness analysis
متن کامل
Fast cosmological parameter estimation using neural networks
We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Defence Science Journal
سال: 2022
ISSN: ['0011-748X', '0976-464X']
DOI: https://doi.org/10.14429/dsj.72.17547